Conditionally Positive Definite Kernels and Infinitely Divisible Distributions
نویسندگان
چکیده
We give a precise characterization of two important classes of conditionally positive definite (CPD) kernels in terms of integral transforms of infinitely divisible distributions. In particular, we show that for any stationary CPD kernel A(x, y) = f(x − y), f is the log-characteristic function of a uniquely determined infinitely divisible distribution; further, for any additive CPD kernel A(x, y) = g(x+ y), g is the log-moment generating function of a uniquely determined infinitely divisible distribution. The results strengthen the connections between CPD kernels and infinitely divisible distributions.
منابع مشابه
Infinitely divisible multivariate and matrix Gamma distributions
Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Particular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma convolutions is studied. In particular, a characterisation in terms of an Itô-Wiener integ...
متن کاملModeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملConditionally Positive Definite Kernels and Pontryagin Spaces
Conditionally positive definite kernels provide a powerful tool for scattered data approximation. Many nice properties of such methods follow from an underlying reproducing kernel structure. While the connection between positive definite kernels and reproducing kernel Hilbert spaces is well understood, the analog relation between conditionally positive definite kernels and reproducing kernel Po...
متن کاملCharacteristic Kernels and Infinitely Divisible Distributions
We connect shift-invariant characteristic kernels to infinitely divisible distributions on R. Characteristic kernels play an important role in machine learning applications with their kernel means to distinguish any two probability measures. The contribution of this paper is twofold. First, we show, using the Lévy–Khintchine formula, that any shift-invariant kernel given by a bounded, continuou...
متن کاملInformation Theoretic Learning with Infinitely Divisible Kernels
In this paper, we develop a framework for information theoretic learning based on infinitely divisible matrices. We formulate an entropy-like functional on positive definite matrices based on Renyi’s axiomatic definition of entropy and examine some key properties of this functional that lead to the concept of infinite divisibility. The proposed formulation avoids the plug in estimation of densi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008